The weekly SILO Seminar Series is made possible through the generous support of the 3M Company and its Advanced Technology Group


with additional support from the Analytics Group of the Northwestern Mutual Life Insurance Company

Northwestern Mutual

Sparse Inverse Problems: Theory, Algorithms, and Applications

Geoffrey Schiebinger, Graduate Student, Department of Statistics, UC-Berkeley

Date and Time: Sep 23, 2015 (12:30 PM)
Location: Orchard room (3280) at the Wisconsin Institute for Discovery Building


A common prior in modern statistical signal processing is that an observed signal is the noisy measurement of a few weighted sources. For example, the image of a collection of point sources of light can be parameterized by their locations and intensities. The goal of superresolution is to remove the blur induced by diffraction by solving for the locations and intensities of the individual point sources. This talk will introduce the basics of sparse inverse problems, present an algorithm to solve them, and discuss some theoretical guarantees for recovery. Throughout, we will focus on superresolution imaging as an example of a sparse inverse problem.