The weekly SILO Seminar Series is made possible through the generous support of the 3M Company and its Advanced Technology Group

with additional support from the Analytics Group of the Northwestern Mutual Life Insurance Company

__Ji Lui and Chris Hinrichs__,

** Date and Time: **Oct 16, 2013 (12:30 PM)

**Location: **
Orchard room (3280) at the Wisconsin Institute for Discovery Building

Speaker 1: Chris Hinrichs

Abstract: Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER). The well known Bonferroni correction method, while being simple to implement, is quite conservative, and can substantially under-power a study because it ignores dependencies between test statistics. Permutation testing, on the other hand, is an exact, non-parametric method of estimating the FWER for a given \alpha-threshold, but for acceptably low thresholds the computational burden can be prohibitive. In this paper, we observe that permutation testing in fact amounts to populating the columns of a very large matrix P. By analyzing the spectrum of this matrix, under certain conditions, we see that P has a low-rank plus a low-variance residual decomposition which makes it suitable for highly sub–sampled — on the order of 0.5% — matrix completion methods. Thus, we propose a novel permutation testing methodology which offers a large speedup, without sacrificing the fidelity of the estimated FWER. Our evaluations on four different neuroimaging datasets show that a computational speedup factor of roughly 50 can be achieved while recovering the FWER distribution up to very high accuracy. Further, we show that the estimated \alpha -threshold is also recovered faithfully, and is stable.

Speaker 2: Ji Liu

Abstract: We describe an asynchronous parallel stochastic coordinate descent algorithm for minimizing smooth unconstrained or separably constrained functions. The method achieves a linear convergence rate on functions that satisfy an essential strong convexity property and a sublinear rate ($1/K$) on general convex functions. Near-linear speedup on a multicore system can be expected if the number of processors is $O(n^{1/2})$ in unconstrained optimization and $O(n^{1/4})$ in the

separable-constrained case, where $n$ is the dimension of the optimization variable. We describe results from implementation on 40-core processors.